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Abstract

The capture of thermal effects in solid state physic is a long standing
issue and several stand-alone or post-process computational codes are now
available. Using different theoretical framework, they propose to provide
some thermodynamic quantities involving the so called anharmonic effects.
In this article, we show that a-TDEP can produce almost all the tempera-
ture dependent thermodynamic quantities you want, from a single ab initio
molecular dynamic (AIMD) trajectory and by means of a Graphical User
Interface (GUI) very easy to use.

We start by detailing how the originally ”Temperature Dependent Effec-
tive Potential” method proposed by Hellman al. [1] is implemented in the
ab initio code Abinit. In particular, we present the various algorithms and
schemes used in a-TDEP to obtain the Interatomic Force Constants (IFC).
The 2nd and 3rd order IFCs are produced self-consistently using a least-square
method fitting the AIMD forces on a model Hamiltonian function of the dis-
placements. In addition, we stress that we face to a constrained least-square
problem since all the IFCs have to fulfill the several symmetry rules imposed
by the space group, by the translation or rotation invariances of the system...

Numerous thermodynamic quantities can be computed starting from the
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2nd order IFCs. The first one is the phonon spectra, from which a large
number of other quantities flow : internal energy, entropy, free energy, spe-
cific heat... The elastic constants and other usual elastic moduli (the bulk,
shear and Young moduli) can be also produced at this level. Using the 3rd

order IFCs, we show how to extract the Grüneisen parameter, the thermal
expansion, the sound velocities... and in particular, how to take into account
the anisotropy of the system within.

As representative applications a-TDEP capabilities, we show the thermal
evolution of the soft phonon mode of α-U, the thermal stabilization of the
bcc phase of Zr and the thermal expansion of Si. All these features highlight
the strong anharmonicity included in this system.
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Introduction

The study of thermal properties of materials has always been the subject
of a significant research in solid state physics. Whatever the purpose, ex-
periments and theory have brought together their discoveries to understand
the mechanisms that governed temperature effects. A large number of fields
of research are concerned, but also interested in a still better description of
materials when they undergo some temperature variations : astrophysics,
superconductivity, aerospace industry, electronics, geoscience... All of them
require the building of phase diagrams, the refinement of Equation of States
(EoS) and the characterization of thermodynamical quantities.

The theory of lattice dynamics has been developed for this purpose and
specifies that thermal effects can be captured by describing precisely the
lattice vibrations of the system. In this framework, the key quantity is the
phonon frequencies ω(V, T ) which depend on the volume V and the tempera-
ture T . Within the harmonic approximation (HA), the most famous approach
based on the quantum harmonic crystal, the lattice vibrations are considered
to be temperature independent. The HA phonon frequencies ωHA(V, 0K) are
assumed to be equal to the ones computed at T=0K and the temperature ef-
fects are taken into account through the population of phonon states. If this
approximation has encountered many success, nevertheless this one failed
to describe the thermal expansion of materials. That’s the reason why an-
other approximation has been proposed : the quasi-harmonic approximation
(QHA). This one considers that the phonon frequencies depend on the tem-
perature through the variation of the volume : ωQHA(V (T ), 0K). Even if the
temperature is not explicitly taken into account, the QHA is able to capture
most of standard thermal effects encountered by materials.

However, the QHA reaches its limits when materials are strongly heated,
when some crystalline phases are (de)stabilized wrt temperature, when ther-
modynamic conditions are close to phase transitions... In these cases, the im-
plicit variation of temperature through the variation of volume is no longer
sufficient. If the QHA already includes some effects going beyond to the
harmonic approximations (ex : thermal expansion), this one is not able to
account for thermal effects at constant volume. These ones will be called
”anharmonic effects” in the following. Following Holzapfel [2], two kinds of
anharmonicities can be distinguished :

• one described by the QHA, named isothermal or extrinsic, able to
describe the thermal expansion but inefficient to depict the thermal
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behaviour of materials at constant volume,

• another going beyond the QHA, named isochoric or intrinsic, which
treats explicitly the dependency wrt the temperature and reproduces
thermal effects at constant volume : ωAnh(V (T ), T ).

One can formalize and synthesize this statement as follows :

dω

dT
=

(
∂ω

∂T

)
V

+

(
∂ω

∂V

)
T

(
∂V

∂T

)
p

(1)

The second term of the right hand side of the previous equation is included
in the QHA, but not the first one only treated when the temperature depen-
dency is explicit.

As well for material science as for theoretical issues, the calculation of
lattice vibrations (whatever the thermodynamic conditions) is become one
of the most important challenge in solid state physics. For this purpose,
the ab initio calculations are well suited : both the effects of pressure and
temperature can be taken into account, without any assumption about the
interatomic potential. Some approaches have been developed in order to
compute the phonon frequencies at 0 K : either by brute force using finite
differences [3, 4] or employing more elegant method such as density functional
perturbation theory (DFPT) [5, 6]. But it seems harder to pick up all the
anharmonic effects using these techniques.

Since the beginning of the 60’s, several microscopic formalisms has been
developed in order to go beyond the simple quantum harmonic crystal and
to deal with the anharmonic effects [7, 8, 9, 10, 11, 12, 13]. Not only do they
offer a description of lattice vibrations going beyond the QHA (that is to
say capturing thermal intrinsic effects) but also they give a comprehensive
framework including anharmonicity in thermodynamic and elasticity. If these
theoretical developments were very successful in the past sixty years, they
were restricted to analytical results. Nowadays, due to the increasing power
of supercomputers, they can be introduced in computational codes in order
to access quantities unreachable in the past.

A large number of theoretical approaches have been developed during
the 10 last years in order to capture the anharmonics effects starting from
ab initio calculations. These ones have led to several computational codes
which have recently emerged in the solid state physics community. Without
claiming to make an exhaustive list, we can mention :
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• the so-called ”Self-Consistent Ab-Initio Lattice Dynamics” (SCAILD)
method developed by Souvatzis and collaborators [14, 15, 16, 17],

• the famous python code for phonons calculations (PHONOPY) devel-
oped by Togo and Tanaka [4, 18, 19] and its new version (DynaPhoPy)
able to extract phonon quasiparticles from AIMD simulations [20],

• the computational code named ”Anharmonic LAttice MODEl” (ALAM-
ODE) developed by Tadano and collaborators [21, 22, 23, 24]

• the ”Stochastic Self-Consistent Harmonic Approximation” (SSCHA)
developed by Errea and collaborators [25, 26, 27, 28, 29],

• the approach named ”Compressive Sensing Lattice Dynamics” devel-
oped by Nelson, Zhou and collaborators [30, 31],

• the method proposed by Glensk and collaborators allowing to deduce
the anharmonic contributions via a direct derivation of the Gibbs en-
ergy [32, 33, 34],

• the Automatic Anharmonic Phonon Library (AAPL) developped by
Curtarolo and coworkers [35, 36]

• ...

In this work, we present an implementation of the method originally pro-
posed by Esfarjani and Stokes [37, 38, 39] then developed by Hellman and
collaborators [1, 40, 41, 42]. This one, named ”Temperature Dependent
Effective Potential” (TDEP), allows to extract the temperature-dependent
interatomic force constants (IFCs) by means of AIMD simulations. As al-
ready highlighted by other authors, this method can be applied successfully
to go beyond QHA and capture explicit thermal effects [43, 44, 45].

If a large number of equations and definitions are already published in
the literature, few details are available concerning the implementation of this
method. In the following, we propose to give them in the particular case of
our home-made implementation in the Abinit code [46]. In a first part... In
a second part...
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1. The Temperature Dependent Effective Potential

1.1. The Interatomic Forces Constants

Let us define a 3-dimensional crystal composed of only one chemical
species and consider that a ground state energy U0 is obtained when the
Na atoms i are in their equilibrium positions τi(0). Now, let us assume that
the system evolves along an AIMD trajectory. At each time step t, we can
define the new positions of the atoms τi(t), the displacements wrt the equi-
librium positions ui(t) = τi(t)− τi(0) and the forces Fi(t). The Hamiltonian
of this system can be rewritten (using a perturbative expansion around the
equilibrium) :

H = U0 +
∑
i,α

(
∂U

∂uαi

)
0

uαi

+
∑
ij,αβ

1

2!

(
∂2U

∂uαi u
β
j

)
0

uαi u
β
j

+
∑

ijk,αβγ

1

3!

(
∂3U

∂uαi u
β
j u

γ
k

)
0

uαi u
β
j u

γ
k

+
∑

ijkl,αβγδ

1

4!

(
∂4U

∂uαi u
β
j u

γ
ku

δ
l

)
0

uαi u
β
j u

γ
ku

δ
l + 0(u5) (2)

In this equation, and in the rest of the article, the indices i, j, k, ... and the
superscripts α, β, γ, ... will define the atoms and the cartesian directions,
respectively. In Equation 2, the first term of the development is :

Πα
i =

(
∂U

∂uαi

)
0

(3)

It defines the net force acting on the atom i. This term is generally null
except for low-symmetry systems with several atoms in the unitcell. At the
second order, the hamiltonian includes all pair interactions between atoms
i and j. This quantity connecting forces and displacements is called ”the
second order IFC” (IFCtot

2 ) :

Φαβ
ij =

(
∂2U

∂uαi u
β
j

)
0

(4)
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In the same way, the third and fourth order IFC (IFCtot
3 , IFCtot

4 ), also
called cubic and quartic force constants, are :

Ψαβγ
ijk =

(
∂3U

∂uαi u
β
j u

γ
k

)
0

and χαβγδijkl =

(
∂4U

∂uαi u
β
j u

γ
ku

δ
l

)
0

(5)

These ones contain all the three and four body interactions between the i, j,
k and l atoms. When the third and fourth order terms become significant,
the system acquires a truly anharmonic behavior with an asymmetric shape
of the potential [47, 48, 49].

In the framework of this Hamiltonian, expanded up to the fourth order
wrt the displacements, the total force FH acting on each atom i and for each
direction α is written as :

FαH,i = −Πα
i −
∑
j,β

Φαβ
ij u

β
j−

1

2

∑
jk,βγ

Ψαβγ
ijk u

β
j u

γ
k−

1

6

∑
jkl,βγδ

χαβγδijk uβj u
γ
ku

δ
l+0(u4) (6)

In a more generic manner, with Θαβ...
ij... (p) the IFC matrix at the pth order,

the previous equation becomes :

FαH,i = −
∑
p

1

p !

∑
j...,β...

Θαβ...
ij... (p)uβj ... (7)

1.2. The principles of the TDEP method

The goal of the TDEP method is to extract the IFCs from a molecular dy-
namic (MD) simulation, since this later includes all the temperature effects.
Let us consider that Nt configurations are acquired along the MD trajectory,
with a set of displacements uαMD,i(t) and forces FαMD,i(t) for each time step
t. Knowing the forces and displacements, it seems possible to extract the
IFCs Θαβ...

ij... (p) from the previous equation by solving the following system of
equations :

FαMD,i(t) = −
∑
p

1

p !

∑
j...,β...

Θαβ...
ij... (p)uβMD,j(t)... (8)

However, the forces being not linear wrt the displacements, this system
becomes impossible to solve. The trick is to rewrite Eq. 8 as a function of
all IFC coefficients (we will show in the following section how to achieve it)
and no longer as a function of the displacements :

FαMD,i(t) =
∑
pλ

fαi,λp(uMD(t))θλp (9)
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with θλp the λth coefficient of the IFCtot
p matrix and fαi,λp(uMD(t)) the function

including all the displacements (but also the factorial and the minus sign).
The system of equations is now linear and has the form A.x = b, with

A the function including all the displacements, b the forces and x the IFC
coefficients to determine. When the MD trajectory is sufficiently long, this
system is overdetermined; i.e. there are more equations than unknowns. One
can solve this system of equations by searching its least squares solution. Let
us define the residual :

R = FMD − f .Θ (10)

such as FMD ≡ FαMD,i(t), f ≡ fαi,λp(uMD(t)) and Θ ≡ θλp. One measure of

smallness of R is to choose θλp such that the sum of squares of residual S is
as small as possible :

S = min(RT .R) = ||FMD − f .Θ||2 (11)

The solution giving the lowest residual (i.e. the IFC coefficients giving the
best fit of the MD forces) is the following least squares solution :

Θ = f †.FMD (12)

with f † the pseudoinverse of the f matrix. This later is a generalization of the
inverse matrix and we will see at the end of the next section how to compute
it.

1.3. How many coefficients in the IFCs?

If the system is composed of Na atoms, the IFCs contain (3Na)
p coef-

ficients at the pth order, so one has to compute
∑4

1(3Na)
p coefficients at

the fourth order. On the other hand, at each time step of the MD simula-
tion one accumulates 3Na equations. Therefore, if one wants to acquire ”at
least” as many equations as unknowns, the MD trajectory have to contain
Nt =

∑4
1(3Na)

p−1 time steps. For instance, if one considers a supercell with
100 atoms, it is needed to have ”at least” Nt=90 301 time steps in order to
compute the 27 090 300 coefficients up to the third order.

These few lines unveil the problematic. The calculation of the whole
IFCtot

p matrices is possible but at a prohibitive computational cost. Moreover,
the goal is to have an overdetermined system of linear equations in order to
solve it by means of a least-squares method.
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Here, we show an expansion of the second order IFC, solution of the
system of equations :

Fx1 (t)
Fy1 (t)
F z1 (t)
Fx2 (t)
Fy2 (t)
F z2 (t)

...
F zNa

(t)


= −



Φ1 0 0
0 Φ1 0
0 0 Φ1

  Φ2 Φ3 Φ4

−Φ3 Φ2 Φ6

Φ5 Φ6 Φ2

 . . .
. . .
. . .Φ2 −Φ3 Φ5

Φ3 Φ2 Φ6

Φ4 Φ6 Φ2

 Φ7 0 0
0 Φ7 0
0 0 Φ7

 . . .
. . .
. . .

. . . . . . . . . . . . . . . . . . . . .





ux1(t)
uy1(t)
uz1(t)
ux2(t)
uy2(t)
uz2(t)

...
uzNa

(t)


The whole 3Na × 3Na matrix is symmetric. Each 3× 3 pair interaction (see

for example the
(

Φ2 Φ3 Φ4
−Φ3 Φ2 Φ6
Φ5 Φ6 Φ2

)
matrix) can exhibit some symmetric, antisym-

metric, non-symmetric or null terms. Actually, the thousands of coefficients
of the IFCtot

p can be reduced to tens. If a strong effort is made upstream
the resolution process in order to take into account all the symmetries, the
method shown previously then becomes tractable. The five symmetry rules,
responsible for the decrease of several orders of magnitude, are detailed in
the following.

2. How to reduce the number of IFCs coefficients?

2.1. The IFCs tensors are symmetric

The energy conservation law impose that the IFCtot
p tensors comply with

the usual transposition rule :

Φαβ
ij = Φβα

ji

Ψαβγ
ijk = Ψβγα

jki = Ψγαβ
kij = Ψαγβ

ikj = Ψβαγ
jik = Ψγβα

kji

χαβγδijkl = χβγδαjkli = χγδαβklij = χαγδβiklj = χβαγδjikl = χγδβαklji = ...

This invariance under the permutation of the indices is easy to implement.
The total number of coefficients is divided by 2 for the IFCtot

2 , 6 for the IFCtot
3

and 24 for the IFCtot
4 .
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2.2. The acoustic sum rule

The momentum conservation principle implies that there is no mass cen-
ter displacement. To write this condition properly we expand the atomic
coordinates as follows : τi(a) = ri + R(a) with ri the atomic position of
the atom i in the cell 0 and R(a) the lattice vector of the cell a. In this
framework, the acoustic sum rule writes :∑

i

Πα
i (0) = 0 ∀ (α)∑

jb

Φαβ
ij (0, b) = 0 ∀ (i, αβ)∑

kc

Ψαβγ
ijk (0, b, c) = 0 ∀ (ijb, αβγ)∑

ld

χαβγδijkl (0, b, c, d) = 0 ∀ (ijkbc, αβγδ)

These equations lead to some relations between all the coefficients of each
IFC. By using some mathematics (and contracting the summation index over
atoms), it can be showed that the Equation 6 could be rewritten as :

Fαi = −Πα
i −

∑
β,j 6=i

Φαβ
i,j (uβj − u

β
i )

− 1

2

∑
βγ

j 6=i,k 6=i

Ψαβγ
ijk (uβj − u

β
i )(uγk − u

γ
i )

− 1

6

∑
βγδ

j 6=i,k 6=i,l 6=i

χαβγδijkl (uβj − u
β
i )(uγk − u

γ
i )(u

δ
j − uδi )

(13)

We can easily see that, at each order, the on-site coefficients are not involved
in the calculation of the total force and that the invariance of the system
under arbitrary translation is fully achieved. The constraints coming from
the acoustic sum rules lead to a reduction of the IFCs coefficients and we
will show in Section 2.7 how to proceed.
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2.3. The rotational invariance

The system (force and energy) has to remain invariant after a rotation.
This imposes some relations between the IFCs of different orders :

0 =
∑
i,αβ

Πα
i (0)τβi ε

αβν ∀ (ν)

0 =
∑
jb,βγ

Φαβ
ij (0, b)τ γj ε

βγν +
∑
β

Πβ
i (0)εβαν ∀ (i, αν)

0 =
∑
γ

Φγβ
ij (0, b)εγαν +

∑
γ

Φαγ
ij (0, b)εγβν

+
∑
kc,γδ

Ψαβγ
ijk (0, b, c)τ δk ε

γδν ∀ (ijb, αβν)

0 =
∑
δ

Ψδβγ
ijk (0, b, c)εδαν +

∑
δ

Ψαδγ
ijk (0, b, c)εδβν +

∑
δ

Ψαβδ
ijk (0, b, c)εδγν

+
∑
ld,δµ

χαβγδijkl (0, b, c, d)τµl ε
δµν ∀ (ijkbc, αβγν)

with εαβγ the Levi-Civita symbols. As for the acoustic sum rules defined
in the previous subsection, one explains in Section 2.7 how to impose such
constraints.

2.4. The crystal symmetries (I)

In the following, we no longer consider the whole IFC matrix and focus
on a ”reference” force constant matrix IFCref

p for each kind (or shell) of
interaction. Using the crystal symmetry operations S, it is then possible
to pursue the reduction process of the IFCs coefficients: i) by deducing
all the IFCsp connected to IFCref

p through a crystal symmetry (that’s the
subject of this section) and ii) by determining the nonzero coefficients really
independent in the reference interaction (this will be the subject of the next
section).

The ”image” interaction, indexed by the ijkl letters, can be deduced
from the ”reference” interaction, named (ref) in the following, using the
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6
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Figure 1: Sketch of interaction shells in 2-dimension. Left panel (second order) : six shells
of pair interaction. The atoms belonging to each shell are connected through the crystal
symmetries. Right panel (third order) : two kinds of triplet interactions.

symmetry operation S, such as :

Πα
i =

∑
µ

SαµΠµ
(ref)

Φαβ
ij =

∑
µν

SαµSβνΦµν
(ref)

Ψαβγ
ijk =

∑
µνξ

SαµSβνSγξΨµνξ
(ref)

χαβγδijkl =
∑
µνξo

SαµSβνSγξSδoχµνξo(ref)

The number of coefficients falls down significantly after this work. If 10 shells
of pair interactions are present, there are at worst 90 coefficients to determine
for the second order... and no longer 90 000 as before.

2.5. The crystal symmetries (II)

The last symmetry rule is probably the most subtle and tedious to carry
out. This one permits to obtain the exact number of nonzero coefficients
really independent in the reference matrices IFCref

p . For simplicity, let us
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consider the point group of the crystal. A comprehensive treatment using
the space group would burden the presentation without changing the result
of the discussion.

The point group is a subgroup of the orthogonal group. Consequently, all
the symmetry operations S (in the cartesian space) belonging to this group
have the following properties :

• The inverse equals its transpose : S−1 = ST

• The norm of the (three) eigenvalues equals to 1: λ = (±1,±1,±1)
when S is symmetric, or λ = (±1, eiθ, e−iθ) when S is antisymmetric.

• The norm of the (three) eigenvectors equals to 1: |p| = 1

These properties will be used thereafter and will strongly simplify the devel-
opment. We have to consider two peculiar cases : some symmetry operations
S may let the interaction invariant or reverse the interaction. This imposes
some constraints on the IFCs and thus reduces the number of coefficients.
Note that the symmetry operations leaving the interaction invariant (or re-
versed) form a subgroup of the point group, so a large set of constraints may
consistently act on the IFCs.

In the following, we restrict the development to the second order. The
reasoning is the same for all the others.

If the interaction is kept invariant.... the IFCref
2 is not affected by the trans-

formation, so :

Φαβ
(ref) =

∑
µν

SαµSβνΦµν
(ref)

We can apply the eigenvectors of the S symmetry operation and obtain :∑
αβ

pαr p
β
sΦαβ

(ref) = λ?rλ
?
s

∑
µν

pµr p
ν
sΦ

µν
(ref) ∀(rs)

By gathering the left and right members we get:

(λ?rλ
?
s − 1)

∑
αβ

pαr p
β
sΦαβ

(ref) = 0 ∀(rs)

The left hand-side of the equation equals to zero if i) the term between
brackets is null or if ii) the summation is null. The eigenvalues of S being
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equal to ±1 or e±iθ, it happens very frequently that their product equals to 1.
Consequently, the condition i) and the previous equality is naturally fulfilled
in numerous cases. Otherwise, we have :∑

αβ

pαr p
β
sΦαβ

(ref) = 0 if λ?rλ
?
s 6= 1 ∀(rs)

These equations impose some constraints on the IFCref
2 (linear relation be-

tween the coefficients). We will see in the following how to extract the
nonzero independent coefficients.

If the interaction is reversed.... the IFCref
2 is also reversed by the transfor-

mation : ∑
µν

SαµSβνΦµν
(ref) = Φαβ

(ref)

where (ref) means that the interaction (ref) is reversed. Using the symmetry
properties of the IFCs then by applying the eigenvectors and gathering the
left and right hand-side, one obtains :∑

αβ

(λ?rλ
?
sp
α
r p

β
s − pβr pαs )Φαβ

(ref) = 0 ∀(rs)

As already highlighted when the interaction is kept invariant, these equations
also impose some constraints if the term within brackets is not null.

2.6. All the symmetries together

For each shell, whether the interaction is kept invariant or reversed, a new
equation (constraint) is obtained when a couple of eigenvalues/eigenvectors
gives a nonzero contribution to the ”term in brackets”. At the end of the
process, all the equations are collected then orthonormalized resulting in a
system of Λ2 independent homogeneous linear equations. This system may
be rewritten as :

9∑
κ=1

Υκ
λ2

Φκ
(ref) = 0 with λ2 = 1, ...Λ2

with the indices αβ contracted in an only index κ, and the matrix Υκ
λ2

coming
from all the nonzero terms between brackets. The solutions of such system
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is obtained by computing the kernel of the application. The result has the
following form :

Φκ
(ref) =

Λ2∑
λ2=1

Υ
′κ
λ2
φλ2(ref) with κ=1,...9

with φλ2(ref) the Λ2 nonzero coefficients of the IFCref
2 . The Υ

′κ
λ2

matrix is built
by gathering the column vectors orthogonal to the line vectors of Υκ

λ2
. In a

similar way, we can apply this process to the other p orders and obtain :

Θκ
(ref)(p) =

Λp∑
λp=1

Υ
′κ
λppθ

λpp

(ref) with κ = 1, ...3p

After taking into account all the interactions of each shell at each order,
we finally recover Equation 9 : Fαi (t) =

∑
λpp

fαi,λpp(u(t))θλpp. All the terms

depending on the displacements uαi (t) and symmetries Sαβ are hidden in the f
matrix. We obtain a system of linear equations with the nonzero coefficients
of the IFCs {θλpp} as the unknown variables. Its expanded form is :

Fx1 (1)
Fy1 (1)
F z1 (1)

...
F zNa

(1)
...

F zNa
(Nt)


=



fx1,11(1) fx1,21(1) . . . fx1,Λpp
(1)

f y1,11(1) f y1,21(1) . . . f y1,Λpp
(1)

f z1,11(1) f z1,21(1) . . . f z1,Λpp
(1)

...
...

...
...

f zNa,11(1) f zNa,21(1) . . . f zNa,Λpp
(1)

...
...

...
...

f zNa,11(Nt) f zNa,21(Nt) . . . f zNa,Λpp
(Nt)





θ11

θ21

θ31

...
θΛ11

...
θΛpp


We stress that the f matrix is really huge. At the second order, its size is
(3 ∗ Na ∗ Nt) × Λ2. If we consider Nt=1000 time steps, Na=100 atoms and
Λ2=20 coefficients, this matrix has 300 000 lines and 20 columns.

2.7. The constrained least squares problem

The whole set of coefficients {θλpp} can be obtained by reversing the pre-
vious equation. An elegant way to perform such reversion is to compute the
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Moore-Penrose pseudoinverse (marked with a † superscript in the following): θ11

...
θΛpp

 =

 fx1,11(1) . . . fx1,Λpp
(1)

...
. . .

...
f zNa,11(Nt) . . . f zNa,Λpp

(Nt)


†

.

 F
x
1 (1)
...

F zNa
(Nt)


The usual and mathematical definition of a pseudoinverse Γ† is :

Γ† = ΓT (Γ.ΓT )−1 (14)

This definition implies to carry out a reversion of the f matrix. In practice,
this method is proved to be numerically unstable and the computational cost
turn out to be really expensive, due to the size of the matrix. A more simple
and accurate way is possible, by performing a singular value decomposition :

Γ† = V .Σ†.UT (15)

with V and U some square matrices and Σ a diagonal matrix. Some linear
algebra routines (dgesdd) enable to perform such decomposition easily. The
Σ being diagonal, this one can be conveniently reversed, which makes this
method much more stable and less expensive than the previous one.

We have seen previously that the acoustic sum rules and the rotational
invariance of the system impose some constraints on the IFCs. In the same
way, we will see in the following that the dynamical matrix and the elastic
tensor also impose other constraints on IFCs. If one rewrites these Q linear
constraints, function of the θi ≡ θλpp coefficients, in a matrix C, we obtain
an homogeneous linear equation system :

Λpp∑
i=1

CT
q,iθ

i = 0 with q = 1, ..., Q (16)

In order to satisfy these constraints we have to :

1. minimize S = ||FMD− f .Θ||2, as previously performed by least squares
method with Eq.11

2. subject to C.Θ = 0.
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That’s could be done by building the Lagrangian function L(θ, ζ) with ζ the
Lagrange multipliers :

L(θ, ζ) = S(θ) +

Q∑
q=1

ζq

Λpp∑
i=1

CT
q,iθ

i (17)

The optimality conditions are :{
∂L
∂θi

= 2
∑Λpp

j=1(fT .f)ijθ
j − 2(fT .FMD)i +

∑Q
q=1 ζqCq,i = 0

∂L
∂ζq

=
∑Q

q=1 C
T
q,iθ

i = 0

In matrix-vector form, these equations are more readable and are written :(
2fT .f CT

C 0

)
.

(
Θ
ζ

)
=

(
2fT .FMD

0

)
As already carried out for the least square problem, the constrained least
squares solution can be obtained by computing the pseudoinverse of the
first matrix in the left hand-side member. Note that the matrix to invert
is smaller than the one shown previously. At the second order, its size is
(Λ2 + Q) × (Λ2 + Q). This one no longer depends on the number of time
steps and atoms. For Λ2=20 coefficients and Q=30 constraints this matrix
has only 50 lines and columns.

3. What are the IFCs useful for?

In this section we show that the knowledge of IFCs allows us to calculate
almost all the quantities that we want to characterize a material: phonon
spectrum, free energy, elastic constants and moduli, sound speed, Grüneisen
parameter, thermal expansion... Since the IFCs are temperature dependent,
all the quantities resulting from them exhibit an explicit dependence with
respect to temperature.

3.1. The phonon spectrum

In order to evaluate the phonon spectrum and the vibrational density of
states, we need to split up again the index over atoms as follows : τi(a) =
ri + R(a) with ri the position of the atom i in the cell 0 and R(a) the lattice
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vector going to cell a.

Once the Φαβ
ij (a, b) tensor is built (after the Moore-Penrose), it is quite

direct to compute the phonons modes of the system by performing a Fourier
Transform of the second order IFCs. We obtain the so-called dynamical
matrix :

Dαβ
ij (q) =

∑
b

Φαβ
ij (0, b)√
MiMj

exp (iq.[R(b)−R(0)]) (18)

with q a wave vector belonging to the Brillouin zone (BZ) and Mi the mass
of atom i. Such equation of motion can be diagonalized in order to obtain
the phonon eigen frequencies ω(q) and eigen modes Xα

i (q) of the lattice :∑
β,j

Dαβ
ij (q)Xβ

js(q) = ω2
s(q)Xα

is(q) (19)

In this equation (representative of an harmonic oscillator) the quantum num-
ber s refers to the quantification of the eigen frequencies ωs(q), with 3 ∗Na

energy levels at all.

The vibrational Density Of States (vDOS) g(ω) is defined by :

g(ω) =
1

3Na

Na∑
s=1

δ(ω − ωs) such as

∫ ωmax

0

g(ω)dω = 1 (20)

with ωmax the highest phonon frequency of the system.

3.2. The Free energy

When one wants to evaluate the free energy F (V, T ) of a system as a
function of the temperature and the volume, the ususal process is to split up
the cold and vibrational contributions such as :

F (V, T ) = U0(V ) + Fvib(V, T ) (21)

with U0(V ) the zero temperature energy of the system and Fvib(V, T ) the
vibrational free energy. If the cold contribution can be estimated through
an independent ground state calculation, this one could be computed also
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using the expression of the energy expanded up to the second order (see
Equation 2) :

Umodel(t) = U0(V ) +
1

2

∑
ij,αβ

Φαβ
ij u

α
i (t)uβj (t) (22)

and the total energy coming from the AIMD simulation Usimul(t). In this
case, the expression of the cold energy is just :

U0(V ) =
〈
Usimul(t)−

1

2

∑
ij,αβ

Φαβ
ij u

α
i (t)uβj (t)

〉
(23)

If there is no strong modification of the equilibrium structure of the cristal
due to temperature effects, these two approaches have to match.

Concerning the vibrational part of the free energy Fvib (see Equation 21)
but also in a similar way for the internal vibrational energy Uvib, the constant-
volume specific heat Cvib,V =

(
∂U
∂T

)
V

and the entropy Svib = −
(
∂Fvib

∂T

)
V

,
they can be evaluated in the framework of the three-dimensional quantum
harmonic crystal using the vDOS [50] :

Fvib =
3Na

β

∫ ωmax

0

ln

(
2 sinh(

β~ω
2

)

)
g(ω)dω (24)

Uvib = 3Na

∫ ωmax

0

~ω
2

coth(
β~ω

2
)g(ω)dω (25)

Cvib,V = 3NakB

∫ ωmax

0

(
β~ω

2 sinh(β~ω
2

)

)2

g(ω)dω (26)

Svib = 3NakB

∫ ωmax

0

[
β~ω

2
coth(

β~ω
2

)− ln

(
2 sinh(

β~ω
2

)

)]
g(ω)dω(27)

All these thermodynamic quantities display three kinds of dependence with
respect to the temperature. The first one originates from the Bose-Einstein
statistic and corresponds to the filling of the energy levels (including the
zero-point energy), another one more implicit is provided by the thermal
expansion of the volume V (T ), and a last one is due to the explicit depen-
dence of the phonon frequencies with respect to the temperature ω(V, T ).
If the first one is taken into account in a quantum harmonic approach, the
second one appears when considering the QHA approximation, and the third
one comes from the explicit treatment of the temperature carried out in this
work.
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3.3. Elastic constants and moduli

The IFCs enable to obtain almost all the thermal elastic properties of a
material. The elastic constants are defined using the Hooke law which relies
on the strain tensor εαβ to the stress one σγδ, through the elastic tensor Cαβγδ:

σαβ = Cαβγδ εγδ (28)

The most famous way employed to compute the elastic tensor is the finite
differences method. This approach, coupled with AIMD simulations, enable
to take into account temperature effects. But numerous simulations have to
be performed and the computational time can be prohibitive (in order to
have long AIMD trajectories). Another approach is to compute phonons and
to evaluate the elastic constants using the slopes of the acoustic branches.
This one is connected to a more elegant formulation using the IFCs [7, 13].
Let us define the Aαβγδ quantity :

Aαβγδ =
1

2V

∑
ij

Φαβ
ij d

γ
ijd

δ
ij with dγij = τ γi − τ

γ
j (29)

The elastic constants are then obtained by using this simple following
equation :

Cαβγδ = Aαγβδ + Aβγαδ − Aαβγδ (30)

Using the Voigt notation and the Voigt formulation, we can define the
isothermal Bulk KT and Shear G moduli (but also the Young modulus E
and the Poisson’s ratio ν) as follows :

KT = ((C11 + C22 + C33) + 2(C12 + C13 + C23))/9 (31)

G = ((C11 + C22 + C33)− (C12 + C13 + C23) + 3(C44 + C55 + C66))/15(32)

It is important to note that this method needs to have long range IFCs in
order to have converged quantities [51].

3.4. Grüneisen parameter & thermal expansion

As well known, the thermal expansion αV , the thermodynamic Grüneisen
parameter γ = V

(
∂P
∂U

)
V

, the isothermal compressibility βT = − 1
V

(
∂V
∂P

)
T

(= 1/KT , see Equation 31) and the specific heat CV (see Equation 26) are
connected to each other through the following equation:

αV =
γCV
βTV

(33)
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In order to compute γ in the lattice dynamic framework, we introduce the
Grüneisen parameters γs(q) and the specific heat CV,s(q) per phonon mode
ωs(q):

γs(q) = − V

ωs(q)

(
∂ωs(q)

∂V

)
T

(34)

CV,s(q) = kB

(
β~ωs(q)

2 sinh(β~ωs(q)
2

)

)2

(35)

It can be shown that the thermodynamic Grüneisen parameter γ is written :

γ =

∑
s,q γs(q)CV,s(q)

CV
(36)

If the system undergoes an anisotropic strain εγδ, such as
∑

κ ε
2
κ = 1 in

the Voigt notation, the displacement of atom k become uγk =
∑

γ εγδτ
δ
k . In

this framework, the mode Grüneisen parameters rewrite [52] :

γγδs (q) = − 1

3ωs(q)

(
∂ωs(q)

∂εγδ

)
T

= − 1

6ω2
s(q)

(
∂ω2

s(q)

∂εγδ

)
T

(37)

Using Equations 19 and 18, we obtain :

γγδs (q) = − 1

6ω2
s(q)

∂

∂εγδ

[∑
ij,αβ

X?α
is (q)

∑
b

1√
MiMj

∂2U

∂uαi ∂u
β
j

exp (iq.R(b))Xβ
js(q)

]
(38)

In this equation one has to compute the third derivative with respect to
displacements and strain. This one can be evaluated using the expansion of
the Hamiltonian up to the third order:

∂

∂εγδ

(
∂2U

∂uαi ∂u
β
j

)
=

∂

∂εγδ

(
Φαβ
ij +

∑
kγ

Ψαβγ
ijk u

γ
k

)
=
∑
k

Ψαβγ
ijk τ

δ
k (39)

We obtain the common definition of the mode Grüneisen parameters as a
function of the interatomic force constants.

γγδs (q) = − 1

6ω2
s(q)

∑
ijk,bc,αβ

Ψαβγ
ijk (0, b, c)

X?α
is (q)Xβ

js(q)√
MiMj

τ δk exp [iq.R(b)] (40)
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Once these parameters obtained, the thermodynamic Grüneisen parame-
ter γ (see Equation 36) and the the thermal expansion αV (see Equation 33)
can be computed directly. In the case of an anisotropic crystal, the thermal
expansion matrix rewrites :

ααβV =
∑
γδ

Sαβγδ
∑
qs

CV,s(q)γγδs (q) (41)

with Sαβγδ ≡ C−1
αβγδ the compliance matrix (see Equation 30). The volumet-

ric thermal expansion αV can be obtained by summing up the linear thermal
expansion coefficients αααV arranged along the diagonal of the thermal expan-
sion matrix : αV =

∑
i α

αα
V .

3.5. Thermal pressure, isentropic quantities & sound speed

If the electronic contribution is not considered, the total stress tensor can
be split into two parts (see Equation 21) :

σαβ =
1

V

(
∂F

∂εαβ

)
T

= σ0,αβ + σvib,αβ (42)

the first part coming from the cold energy U0(V ) and the second one being
the thermal stress contribution deriving from the thermal free energy (see
Equation 24) as :

σvib,αβ = −
∑
s,q

γαβs (q)
Uvib,s(q)

V
with (43)

Uvib,s(q) =
~ωs(q)

2
coth(

β~ωs(q)

2
) (44)

This result is really important since it makes it possible to verify that the
pressure computed along the AIMD trajectory P = −1

3
Tr[σ] is well repro-

duced by the sum of the cold and vibrational pressures. The later part being
computed using the Grüneisen parameter, it’a a good way to check its con-
vergence.

The thermodynamic Grüneisen parameter and the thermal expansion are
also useful to compute the isentropic (or adiabatic) compressibility βS and
the constant-pressure heat capacity CP :

βS = βT (1 + αV γT ) =
1

KS

(45)

CP = CV (1 + αV γT ) (46)

22



Note that βT and CV are already known (see Equations 31 and 26). Using
the isentropic compressibility, the longitudinal Vp and transverse Vs sound
speeds can be also obtained :

Vp =

√
KS + 4G/3

ρ
(47)

Vs =

√
G

ρ
(48)

3.6. Normal modes & mean square displacements

3.7. Limitations & perspectives

Order 4 [47, 48, 49], Lifetime, phonon shift, lattice thermal conductivity

4. Examples illustrating the a-TDEP capabilities

4.1. Failure of the QHA : the α-U

4.2. Thermal stabilization of the Zr bcc phase

4.3. Thermal expansion of Si

For Si [53]

5. Conclusion
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